THE ERA OF ARTILLERY

Looking at an old-time cannon, most people are sure of just one thing: the shot came out of the front end. For that reason these pages are written; people are curious about the fascinating weapon that so prodigiously and powerfully lengthened the warrior's arm. And theirs is a justifiable curiosity, because the gunner and his "art" played a significant role in our history.

THE ANCIENT ENGINES OF WAR

To compare a Roman catapult with a modern trench mortar seems absurd. Yet the only basic difference is the kind of energy that Sends the projectile on its way.

In the dawn of history, war engines were performing the function of artillery (which may be loosely defined as a means of hurling missiles too heavy to be thrown by hand), and with these crude weapons the basic principles of artillery were laid down. The Scriptures record the use of ingenious machines on the walls of Jerusalem eight centuries B. C.—machines that were probably predecessors of the catapult and ballista, getting power from twisted ropes made of hair, hide or sinew. The ballista had horizontal arms like a bow. The arms were set in rope; a cord, fastened to the arms like a bowstring, fired arrows, darts, and stones. Like a modern field gun, the ballista shot low and directly toward the enemy.

ballista
FIGURE 1—BALLISTA. Caesar covered his landing in Britain with fire from catapults and ballistas.

The catapult was the howitzer, or mortar, of its day and could throw a hundred-pound stone 600 yards in a high arc to strike the enemy behind his wall or batter down his defenses. "In the middle of the ropes a wooden arm rises like a chariot pole," wrote the historian Marcellinus. "At the top of the arm hangs a sling. When battle is commenced, a round stone is set in the sling. Four soldiers on each side of the engine wind the arm down until it is almost level with the ground. When the arm is set free, it springs up and hurls the stone forth from its sling." In early times the weapon was called a "scorpion," for like this dreaded insect it bore its "sting" erect.

catapult
FIGURE 2—CATAPULT.

The trebuchet was another war machine used extensively during the Middle Ages. Essentially, it was a seesaw. Weights on the short arm swung the long throwing arm.

trebuchet
FIGURE 3—TREBUCHET. A heavy trebuchet could throw a 300-pound stone 300 yards.

These weapons could be used with telling effect, as the Romans learned from Archimedes in the siege of Syracuse (214-212 B.C.). As Plutarch relates, "Archimedes soon began to play his engines upon the Romans and their ships, and shot stones of such an enormous size and with so incredible a noise and velocity that nothing could stand before them. At length the Romans were so terrified that, if they saw but a rope or a beam projecting over the walls of Syracuse, they cried out that Archimedes was leveling some machine at them, and turned their backs and fled."

Long after the introduction of gunpowder, the old engines of war continued in use. Often they were side by side with cannon.

 

Views: 367

Replies to This Discussion

Gunpowder Comes to Europe
Chinese "thunder of the earth" (an effect produced by filling a large bombshell with a gunpowder mixture) sounded faint reverberations amongst the philosophers of the western world as early as A.D. 300. Though the Chinese were first instructed in the scientific casting of cannon by missionaries during the 1600's, crude cannon seem to have existed in China during the twelfth century and even earlier.
In Europe, a ninth century Latin manuscript contains a formula for gunpowder. But the first show of firearms in western Europe may have been by the Moors, at Saragossa, in A.D. 1118. In later years the Spaniards turned the new weapon against their Moorish enemies at the siege of Cordova (1280) and the capture of Gibraltar (1306).
It therefore follows that the Arabian madfaa, which in turn had doubtless descended from an eastern predecessor, was the original cannon brought to western civilization. This strange weapon seems to have been a small, mortar-like instrument of wood. Like an egg in an egg cup, the ball rested on the muzzle end until firing of the charge tossed it in the general direction of the enemy. Another primitive cannon, with narrow neck and flared mouth, fired an iron dart. The shaft of the dart was wrapped with leather to fit tightly into the neck of the piece. A red-hot bar thrust through a vent ignited the charge. The range was about 700 yards. The bottle shape of the weapon perhaps suggested the name pot de fer (iron jug) given early cannon, and in the course of evolution the narrow neck probably enlarged until the bottle became a straight tube.
During the Hundred Years' War (1339-1453) cannon came into general use. Those early pieces were very small, made of iron or cast bronze, and fired lead or iron balls. They were laid directly on the ground, with muzzles elevated by mounding up the earth. Being cumbrous and inefficient, they played little part in battle, but were quite useful in a siege.
The Bombards
By the middle 1400's the little popguns that tossed one- or two-pound pellets had grown into enormous bombards. Dulle Griete, the giant bombard of Ghent, had a 25-inch caliber and fired a 700-pound granite ball. It was built in 1382. Edinburgh Castle's famous Mons Meg threw a 19-1/2-inch iron ball some 1,400 yards (a mile is 1,760 yards), or a stone ball twice that far.
The Scottish kings used Meg between 1455 and 1513 to reduce the castles of rebellious nobles. A baron's castle was easily knocked to pieces by the prince who owned, or could borrow, a few pieces of heavy ordnance. The towering walls of the old-time strongholds slowly gave way to the earthwork-protected Renaissance fortification, which is typified in the United States by Castillo de San Marcos, in Castillo de San Marcos National Monument, St. Augustine, Fla.
Some of the most formidable bombards were those of the Turks, who used exceptionally large cast-bronze guns at the siege of Constantinople in 1453. One of these monsters weighed 19 tons and hurled a 600-pound stone seven times a day. It took some 60 oxen and 200 men to move this piece, and the difficulty of transporting such heavy ordnance greatly reduced its usefulness. The largest caliber gun on record is the Great Mortar of Moscow. Built about 1525, it had a bore of 36 inches, was 18 feet long, and fired a stone projectile weighing a ton. But by this time the big guns were obsolete, although some of the old Turkish ordnance survived the centuries to defend Constantinople against a British squadron in 1807. In that defense a great stone cut the mainmast of the British flagship, and another crushed through the English ranks to kill or wound 60 men.
small bombard
FIGURE 4—EARLY SMALL BOMBARD (1330).
It was made of wrought-iron bars, bound with hoops.
The ponderosity of the large bombards held them to level land, where they were laid on rugged mounts of the heaviest wood, anchored by stakes driven into the ground. A gunner would try to put his bombard 100 yards from the wall he wanted to batter down. One would surmise that the gunner, being so close to a castle wall manned by expert Genoese cross-bowmen, was in a precarious position. He was; but earthworks or a massive wooden shield arranged like a seesaw over his gun gave him fair protection. Lowering the front end of the shield made a barricade behind which he could charge his muzzle loader (see fig. 49).
In those days, and for many decades thereafter, neither gun crews nor transport were permanent. They had to be hired as they were needed. Master gunners were usually civilian "artists," not professional soldiers, and many of them had cannon built for rental to customers. Artillerists obtained the right to captured metals such as tools and town bells, and this loot would be cast into guns or ransomed for cash. The making of guns and gunpowder, the loading of bombs, and even the serving of cannon were jealously guarded trade secrets. Gunnery was a closed corporation, and the gunner himself a guildsman. The public looked upon him as something of a sorcerer in league with the devil, and a captured artilleryman was apt to be tortured and mutilated. At one time the Pope saw fit to excommunicate all gunners. Also since these specialists kept to themselves and did not drink or plunder, their behavior was ample proof to the good soldier of the old days that artillerists were hardly human.
Sixteenth Century Cannon

After 1470 the art of casting greatly improved in Europe. Lighter cannon began to replace the bombards. Throughout the 1500's improvement was mainly toward lightening the enormous weights of guns and projectiles, as well as finding better ways to move the artillery. Thus, by 1556 Emperor Ferdinand I was able to march against the Turks with 57 heavy and 127 light pieces of ordnance.

At the beginning of the 1400's cast-iron balls had made an appearance. The greater efficiency of the iron ball, together with an improvement in gunpowder, further encouraged the building of smaller and stronger guns. Before 1500 the siege gun had been the predominant piece. Now forged-iron cannon for field, garrison, and naval service—and later, cast-iron pieces—were steadily developed along with cast-bronze guns, some of which were beautifully ornamented with Renaissance workmanship. The casting of trunnions on the gun made elevation and transportation easier, and the cumbrous beds of the early days gave way to crude artillery carriages with trails and wheels. The French invented the limber and about 1550 took a sizable forward step by standardizing the calibers of their artillery.

Meanwhile, the first cannon had come to the New World with Columbus. As the Pinta's lookout sighted land on the early morn of October 12, 1492, the firing of a lombard carried the news over the moonlit waters to the flagship Santa Maria. Within the next century, not only the galleons, but numerous fortifications on the Spanish Main were armed with guns, thundering at the freebooters who disputed Spain's ownership of American treasure. Sometimes the adventurers seized cannon as prizes, as did Sir Francis Drake in 1586 when he made off with 14 bronze guns from St. Augustine's little wooden fort of San Juan de Pinos. Drake's loot no doubt included the ordnance of a 1578 list, which gives a fair idea of the armament for an important frontier fortification: three reinforced cannon, three demiculverins, two sakers (one broken), a demisaker and a falcon, all properly mounted on elevated platforms in the fort to cover every approach. Most of them were highly ornamented pieces founded between 1546 and 1555. The reinforced cannon, for instance, which seem to have been cast from the same mold, each bore the figure of a savage hefting a club in one hand and grasping a coin in the other. On a demiculverin, a bronze mermaid held a turtle, and the other guns were decorated with arms, escutcheons, the founder's name, and so on.

In the English colonies during the sixteenth and seventeenth centuries, lighter pieces seem to have been the more prevalent; there is no record of any "cannon." (In those days, "cannon" were a special class.) Culverins are mentioned occasionally and demiculverins rather frequently, but most common were the falconets, falcons, minions, and sakers. At Fort Raleigh, Jamestown, Plymouth, and some other settlements the breech-loading half-pounder perrier or "Patterero" mounted on a swivel was also in use. (See frontispiece.)

It was during the sixteenth century that the science of ballistics had its beginning. In 1537, Niccolo Tartaglia published the first scientific treatise on gunnery. Principles of construction were tried and sometimes abandoned, only to reappear for successful application in later centuries. Breech-loading guns, for instance, had already been invented. They were unsatisfactory because the breech could not be sealed against escape of the powder gases, and the crude, chambered breechblocks, jammed against the bore with a wedge, often cracked under the shock of firing. Neither is spiral rifling new. It appeared in a few guns during the 1500's.

Mobile artillery came on the field with the cart guns of John Zizka during the Hussite Wars of Bohemia (1419-24). Using light guns, hauled by the best of horses instead of the usual oxen, the French further improved field artillery, and maneuverable French guns proved to be an excellent means for breaking up heavy masses of pikemen in the Italian campaigns of the early 1500's. The Germans under Maximilian I, however, took the armament leadership away from the French with guns that ranged 1,500 yards and with men who had earned the reputation of being the best gunners in Europe.

Then about 1525 the famous Spanish Square of heavily armed pikemen and musketeers began to dominate the battlefield. In the face of musketry, field artillery declined. Although artillery had achieved some mobility, carriages were still cumbrous. To move a heavy English cannon, even over good ground, it took 23 horses; a culverin needed nine beasts. Ammunition—mainly cast-iron round shot, the bomb (an iron shell filled with gunpowder), canister (a can filled with small projectiles), and grape shot (a cluster of iron balls) —was carried the primitive way, in wheelbarrows and carts or on a man's back. The gunner's pace was the measure of field artillery's speed: the gunner walked beside his gun! Furthermore, some of these experts were getting along in years. During Elizabeth's reign several of the gunners at the Tower of London were over 90 years old.

Lacking mobility, guns were captured and recaptured with every changing sweep of the battle; so for the artillerist generally, this was a difficult period. The actual commander of artillery was usually a soldier; but transport and drivers were still hired, and the drivers naturally had a layman's attitude toward battle. Even the gunners, those civilian artists who owed no special duty to the prince, were concerned mainly over the safety of their pieces—and their hides, since artillerists who stuck with their guns were apt to be picked off by an enemy musketeer. Fusilier companies were organized as artillery guards, but their job was as much to keep the gun crew from running away as to protect them from the enemy.

breechloader
FIGURE 5—FIFTEENTH-CENTURY BREECHLOADER.

So, during 400 years, cannon had changed from the little vases, valuable chiefly for making noise, into the largest caliber weapons ever built, and then from the bombards into smaller, more powerful cannon. The gun of 1600 could throw a shot almost as far as the gun of 1850; not in fire power, but in mobility, organization, and tactics was artillery undeveloped. Because artillery lacked these things, the pike and musket were supreme on the battlefield.

The Seventeenth Century
& Gustavus Adolphus
Under the Swedish warrior Gustavus Adolphus, artillery began to take its true position on the field of battle. Gustavus saw the need for mobility, so he divorced anything heavier than a 12-pounder from his field artillery. His famous "leatheren" gun was so light that it could be drawn and served by two men. This gun was a wrought-copper tube screwed into a chambered brass breech, bound with four iron hoops. The copper tube was covered with layers of mastic, wrapped firmly with cords, then coated with an equalizing layer of plaster. A cover of leather, boiled and varnished, completed the gun. Naturally, the piece could withstand only a small charge, but it was highly mobile.
Gustavus abandoned the leather gun, however, in favor of a cast-iron 4-pounder and a 9-pounder demiculverin produced by his bright young artillery chief, Lennart Torstensson. The demiculverin was classed as the "feildpeece" par excellence, while the 4-pounder was so light (about 500 pounds) that two horses could pull it in the field.
These pieces could be served by three men. Combining the powder charge and projectile into a single cartridge did away with the old method of ladling the powder into the gun and increased the rapidity of fire. Whereas in the past one cannon for each thousand infantrymen had been standard, Gustavus brought the ratio up to six cannon, and attached a pair of light pieces to each regiment as "battalion guns." At the same time he knew the value of fire concentration, and he frequently massed guns in strong batteries. His plans called for smashing hostile infantry formations with artillery fire, while neutralizing the ponderous, immobile enemy guns with a whirlwind cavalry charge. The ideas were sound. Gustavus smashed the Spanish Squares at Breitenfeld in 1631.
light artillery
FIGURE 6—LIGHT ARTILLERY OF GUSTAVUS ADOLPHUS (1630).
Following the Swedish lead, all nations modified their artillery. Leadership fell alternately to the Germans, the French, and the Austrians. The mystery of artillery began to disappear, and gunners became professional soldiers. Bronze came to be the favorite gunmetal.
Louis XIV of France seems to have been the first to give permanent organization to the artillery. He raised a regiment of artillerymen in 1671 and established schools of instruction. The "standing army" principle that began about 1500 was by now in general use, and small armies of highly trained professional soldiers formed a class distinct from the rest of the population. As artillery became an organized arm of the military, expensive personnel and equipment had to be maintained even in peacetime. Still, some necessary changes were slow in coming. French artillery officers did not receive military rank until 1732, and in some countries drivers were still civilians in the 1790's. In 1716, Britain had organized artillery into two permanent companies, comprising the Royal Regiment of Artillery. Yet as late as the American Revolution there was a dispute about whether a general officer whose service had been in the Royal Artillery was entitled to command troops of all arms. There was no such question in England of the previous century: the artillery general was a personage having "alwayes a part of the charge, and when the chief generall is absent, he is to command all the army."
garrison gun
FIGURE 7—FRENCH GARRISON GUN (1650-1700). The gun is on a sloping wooden platform at the embrasure. Note the heavy bed on which the cheeks of the carriage rest and the built-in skid under the center of the rear axletree.
Cannons of the
18th Century
During the early 1700's cannon were used to protect an army's deployment and to prepare for the advance of the troops by firing upon enemy formations. There was a tendency to regard heavy batteries, properly protected by field works or permanent fortifications, as the natural role for artillery. But if artillery was seldom decisive in battle, it nevertheless waxed more important through improved organization, training, and discipline. In the previous century, calibers had been reduced in number and more or less standardized; now, there were notable scientific and technical improvements. The English scientist Benjamin Robins wedded theory to practice; his New Principles of Gunnery (1742) did much to bring about a more scientific attitude toward ballistics. One result of Robins' research was the introduction, in 1779, of carronades, those short, light pieces so useful in the confines of a ship's gun deck. Carronades usually ranged in caliber from 6- to 68-pounders.
In North America, cannon were generally too cumbrous for Indian fighting. But from the time (1565) the French, in Florida, loosed the first bolt at the rival fleet of the Spaniard Pedro Menéndez, cannon were used on land and sea during intercolonial strife, or against corsairs. Over the vast distances of early America, transport of heavy guns was necessarily by water. Without ships, the guns were inexorably walled in by the forest. So it was when the Carolinian Col. James Moore besieged St. Augustine in 1702. When his ships burned. Moore had to leave his guns to the Spaniards.
One of the first appearances of organized American field artillery on the battlefield was in the Northeast, where France's Louisburg fell to British and Colonial forces in 1745. Serving with the British Royal Artillery was the Ancient and Honorable Artillery Company of Boston, which had originated in 1637. English field artillery of the day had "brigades" of four to six cannon, and each piece was supplied with 100 rounds of solid shot and 30 rounds of grape. John Muller's Treatise on Artillery, the standard English authority, was republished in Philadelphia (1779), and British artillery was naturally a model for the arm in America.
6-pound cannon
FIGURE 8—AMERICAN 6-POUNDER FIELDPIECE (c. 1775).
At the outbreak of the War of Independence, American Patriots' artillery was an accumulation of guns, mortars, and howitzers of every sort and some 13 different calibers. Since the source of importation was cutoff, the undeveloped casting industries of the Colonies undertook cannon founding and by 1775 the foundries of Philadelphia were casting both bronze and iron guns. A number of bronze French guns were brought in later. The mobile guns of Gen. George Washington's army ranged from 3- to 24- pounders, with 5-1/2- and 8-inch howitzers. They were usually bronze. A few iron siege guns of 18-, 24-, and 32-pounder caliber were on hand. The guns used round shot, grape, and case shot; mortars and howitzers fired bombs and carcasses. "Side boxes" on each side of the field carriage held 21 rounds of ammunition and were taken off when the piece was brought into battery. Horses or oxen, with hired civilian drivers, formed the transport. On the battlefield the cannoneers manned drag ropes to maneuver the guns into position.
Sometimes, as at Guilford Courthouse, the ever-present forest diminished the effectiveness of artillery, but nevertheless the arm was often put to good use. The skill of the American and French gunners at Yorktown contributed no little toward the speedy advance of the siege trenches. Yorktown battlefield today has many examples of Revolutionary War cannon, including some fine ship guns recovered from British vessels sunk during the siege of 1781.
In Europe, meanwhile, Frederick the Great of Prussia learned how to use cannon in the campaigns of the Seven Years' War (1756-63). The education was forced upon him as gradual destruction of his veteran infantry made him lean more heavily on artillery. To keep pace with cavalry movements, he developed a horse artillery that moved rapidly along with the cavalry. His field artillery had only light guns and howitzers. With these improvements he could establish small batteries at important points in the battle line, open the fight, and protect the deployment of his columns with light guns. What was equally significant, he could change the position of his batteries according to the course of the action.
Frederick sent his 3- and 6-pounders ahead of the infantry. Gunners dismounted 500 paces from the enemy and advanced on foot, pushing their guns ahead of them, firing incessantly and using grape shot during the latter part of their advance. Up to closest range they went, until the infantry caught up, passed through the artillery line, and stormed the enemy position. Remember that battle was pretty formal, with musketeers standing or kneeling in ranks, often in full view of the enemy!
12-pound field gun
FIGURE 9—FRENCH 12-POUNDER FIELD GUN (c. 1780).
Perhaps the outstanding artilleryman of the 1700's was the Frenchman Jean Baptiste de Gribeauval, who brought home a number of ideas after serving with the capable Austrian artillery against Frederick. The great reform in French artillery began in 1765, although Gribeauval was not able to effect all of his changes until he became Inspector General of Artillery in 1776. He all but revolutionized French artillery, and vitally influenced other countries.
Gribeauval's artillery came into action at a gallop and smothered enemy batteries with an overpowering volume of fire. He created a distinct materiel for field, siege, garrison, and coast artillery. He reduced the length and weight of the pieces, as well as the charge and the windage (the difference between the diameters of shot and bore); he built carriages so that many parts were interchangeable, and made soldiers out of the drivers. For siege and garrison he adopted 12- and 16-pounder guns, an 8-inch howitzer and 8-, 10-, and 12-inch mortars. For coastal fortifications he used the traversing platform which, having rear wheels that ran upon a track, greatly simplified the training of a gun right or left upon a moving target (fig. 10). Gribeauval-type materiel was used with the greatest effect in the new tactics which Napoleon introduced.
Napoleon owed much of his success to masterly use of artillery. Under this great captain there was no preparation for infantry advance by slowly disintegrating the hostile force with artillery fire. Rather, his artillerymen went up fast into closest range, and by actually annihilating a portion of the enemy line with case-shot fire, covered the assault so effectively that columns of cavalry and infantry reached the gap without striking a blow!
After Napoleon, the history of artillery largely becomes a record of its technical effectiveness, together with improvements or changes in putting well-established principles into action.
United States Cannon
of the Early 1800's
The United States adopted the Gribeauval system of artillery carriages in 1809, just about the time it was becoming obsolete (the French abandoned it in 1829). The change to this system, however, did not include adoption of the French gun calibers. Early in the century cast iron replaced bronze as a gunmetal, a move pushed by the growing United States iron industry; and not until 1836 was bronze readopted in this country for mobile cannon. In the meantime, U. S. Artillery in the War of 1812 did most of its fighting with iron 6-pounders. Fort McHenry, which is administered by the National Park Service as a national monument and historic shrine, has a few ordnance pieces of the period.
32-pounder on carriage
FIGURE 10—U. S. 32-POUNDER ON BARBETTE CARRIAGE (1860).
During the Mexican War, the artillery carried 6- and 12-pounder guns, the 12-pounder mountain howitzer (a light piece of 220 pounds which had been added for the Indian campaigns), a 12-pounder field howitzer (788 pounds), the 24- and 32-pounder howitzers, and 8- and 10-inch mortars. For siege, garrison, and seacoast there were pieces of 16 types, ranging from a 1-pounder to the giant 10-inch Columbiad of 7-1/2 tons. In 1857, the United States adopted the 12-pounder Napoleon gun-howitzer, a bronze smoothbore designed by Napoleon III, and this muzzleloader remained standard in the army until the 1880's.
The U.S. naval ironclads, which were usually armed with powerful 11- or 15-inch smoothbores, were a revolutionary development in mid-century. Most were low-hulled, armored, steam vessels, with one or two revolving turrets. Although most cannonballs bounced from the armor, lack of speed made the "cheese box on a raft" vulnerable, and poor visibility through the turret slots was a serious handicap in battle.
9-inch shell-gun
FIGURE 11—U. S. NAVY 9-INCH SHELL-GUN ON MARSILLY CARRIAGE (1866).
While 20-, 30-, and 60-pounder Parrott rifles soon made an appearance in the Federal Navy, along with Dahlgren's 12- and 20-pounder rifled howitzers, the Navy relied mainly upon its "shell-guns": the 9-, 10-, 11-, and 15-inch iron smoothbores. There were also 8-inch guns of 55 and 63 "hundredweight" (the contemporary naval nomenclature), and four sizes of 32-pounders ranging from 27- to 57-hundredweight. The heavier guns took more powder and got slightly longer ranges. Many naval guns of the period are characterized by a hole in the cascabel, through which the breeching tackle was run to check recoil. The Navy also had a 13-inch mortar, mounted aboard ship on a revolving circular platform. Landing parties were equipped with 12- or 24-pounder howitzers either on boat carriages (a flat bed something like a mortar bed) or on three-wheeled "field" carriages.
Rifling of Cannon Projectiles
Rifling, by imparting a spin to the projectile as it travels along the spiral grooves in the bore, permits the use of a long projectile and ensures its flight point first, with great increase in accuracy. The longer projectile, being both heavier and more streamlined than round shot of the same caliber, also has a greater striking energy.
Though Benjamin Robins was probably the first to give sound reasons, the fact that rifling was helpful had been known a long time. A 1542 barrel at England, has six fine spiral grooves in the bore. Straight grooving had been applied to small arms as early as 1480, and during the 1500's straight grooving of musket bores was extensively practiced, Probably, rifling evolved from the early observation of the feathers on an arrow—and from the practical results of cutting channels in a musket, originally to reduce fouling, then because it was found to improve accuracy of the shot. Rifled small-arm efficiency was clearly shown at Kings Mountain during the American Revolution.
In spite of earlier experiments, however, it was not until the 1840's that attempts to rifle cannon could be called successful. In 1846, Major Cavelli in Italy and Baron Wahrendorff in Sweden independently produced rifled iron breech-loading cannon. The Cavelli gun had two spiral grooves into which fitted the 1/4-inch projecting lugs of a long projectile (fig. 12a). Other attempts at what might be called rifling were Lancaster's elliptical-bore gun and the later development of a spiraling hexagonal-bore by Joseph Whitworth (fig. 12b). The English Whitworth was used by Confederate artillery. It was an efficient piece, though subject to easy fouling that made it dangerous.
rifle projectiles
FIGURE 12—DEVELOPMENT OF RIFLE PROJECTILES (1840-1900). a— Cavelli type. b—Whitworth. c—James. d—Hotchkiss. e—Parrott. f—Copper rotating band type. (Not to scale.)
Then, in 1855, Britain's Sir William Armstrong designed a rifled breech-loader that included so many improvements as to be revolutionary. This gun was rifled with a large number of grooves and fired lead-coated projectiles. Much of its success, however, was due to the built-up construction: hoops were shrunk on over the tube, with the fibers of the metal running in the directions most suitable for strength. Several United States muzzle-loading rifles of built-up construction were produced about the same time as the Armstrong and included the Chambers (1849), the Treadwell (1855), and the well-known Parrott of 1861 (figs. 12e and 13).
The German Krupp rifle had an especially successful breech mechanism. It was not a built-up gun, but depended on superior crucible steel for its strength. Cast-steel had been tried as a gunmetal during the sixteenth and seventeenth centuries, but metallurgical knowledge of the early days could not produce sound castings. Steel was also used in other mid-nineteenth century rifles, such as the United States Wiard gun and the British Blakely, with its swollen, cast-iron breech hoop. Fort Pulaski National Monument, near Savannah, Ga., has a fine example of a 24-pounder Blakely used by the Confederates in the 1862 defense of the fort.
The United States began intensive experimentation with rifled cannon late in the 1850's, and a few rifled pieces were made by the South Boston Iron Foundry and also by the West Point Foundry at Cold Spring, N. Y. The first appearance of rifles in any quantity, however, was near the outset of the 1861 hostilities, when the Federal artillery was equipped with 300 wrought-iron 3-inch guns (fig. 14e). This "12-pounder," which fired a 10-pound projectile, was made by wrapping sheets of boiler iron around a mandrel. The cylinder thus formed was heated and passed through the rolls for welding, then cooled, bored, turned, and rifled. It remained in service until about 1900. Another rifle giving good results was the cast-iron 4-1/2-inch siege gun. This piece was cast solid, then bored, turned, and rifled. Uncertainty of strength, a characteristic of cast iron, caused its later abandonment.
The United States rifle that was most effective in siege work was the invention of Robert P. Parrott. His cast-iron guns (fig. 13), many of which are seen today in the battlefield parks, are easily recognized by the heavy wrought-iron jacket reinforcing the breech. The jacket was made by coiling a bar over the mandrel in a spiral, then hammering the coils into a welded cylinder. The cylinder was bored and shrunk on the gun. Parrotts were founded in 10-, 20-, 30-, 60-, 100-, 200-, and 300-pounder calibers, one foundry making 1,700 of them during the Civil War.
Parrott 10-pounder
FIGURE 13—PARROTT 10-POUNDER RIFLE (1864).
All nations, of course, had large stocks of smoothbores on hand, and various methods were devised to make rifles out of them. The U. S. Ordnance Board, for instance, believed the conversion simply involved cutting grooves in the bore, right at the forts or arsenals where the guns were. In 1860, half of the United States artillery was scheduled for conversion. As a result, a number of old smoothbores were rebored to fire rifle projectiles of the various patents which preceded the modern copper rotating band (fig. 12c, d, f). Under the James patent (fig. 12c) the weight of metal thrown by a cannon was virtually doubled; converted 24-, 32- and 42-pounders fired elongated shot classed respectively as 48-, 64-, and 84-pound projectiles. After the siege of Fort Pulaski, Federal Gen. Q. A. Gillmore praised the 84-pounder and declared "no better piece for breaching can be desired," but experience soon proved the heavier projectiles caused increased pressures which converted guns could not withstand for long.
The early United States rifles had a muzzle velocity about the same as the smoothbore, but whereas the round shot of the smoothbore lost speed so rapidly that at 2,000 yards its striking velocity was only about a third of the muzzle velocity, the more streamlined rifle projectile lost speed very slowly. But the rifle had to be served more carefully than the smoothbore. Rifling grooves were cleaned with a moist sponge, and sometimes oiled with another sponge. Lead-coated projectiles like the James, which tended to foul the grooves of the piece, made it necessary to scrape the rifle grooves after every half dozen shots, although guns using brass-banded projectiles did not require the extra operation. With all muzzle-loading rifles, the projectile had to be pushed close home to the powder charge; otherwise, the blast would not fully expand its rotating band, the projectile would not take the grooves, and would "tumble" after leaving the gun, to the utter loss of range and accuracy. Incidentally, gunners had to "run out" (push the gun into firing position) both smoothbore and rifled muzzle-loaders carefully. A sudden stop might make the shot start forward as much as 2 feet.
When the U. S. Ordnance Board recommended the conversion to rifles, it also recommended that all large caliber iron guns be manufactured on the method perfected by Capt. T. J. Rodman, which involved casting the gun around a water-cooled core. The inner walls of the gun thus solidified first, were compressed by the contraction of the outer metal as it cooled down more slowly, and had much greater strength to resist explosion of the charge. The Rodman smoothbore, founded in 8-, 10-, 15-, and 20-inch calibers, was the best cast-iron ordinance of its time (fig. 14f). The 20-inch gun, produced in 1864, fired a 1,080-pound shot. The 15-incher was retained in service through the rest of the century, and these monsters are still to be seen at Fort McHenry National Monument and Historic Shrine; on the ramparts of Fort Jefferson, in the national monument of that name, in the Dry Tortugas Islands; and at Forts Moultrie, Foote, and Massachusetts—all areas administered by the National Park Service.
The Cannons
of the Civil War
At the opening of this conflict most of the materiel for both armies was of the same type—smoothbore. The various guns included weapons in the great masonry fortifications built on the long United States coast line beginning in the 1790's—weapons such as the Columbiad, a heavy, long-chambered American muzzle-loadler of iron, developed from its bronze forerunner of 1810. The Columbiad (fig. 14d) was made in 8-, 10-, and 12-inch calibers and could throw shot and shell well over 5,000 yards. "New" Columbiads came out of the foundries at the start of the 1860's, minus the powder chamber and with smoother lines. Behind the parapets or in fort gunrooms were 32- and 42-pounder iron seacoast guns (fig. 10); 24-pounder bronze howitzers lay in the bastions to flank the long reaches of the fort walls. There were 8-inch seacoast howitzers for heavier work. The largest caliber piece was the ponderous 13-inch seacoast mortar.
Siege and garrison cannon included 24-pounder and 8-inch bronze howitzers (fig. 14b), a 10-inch bronze mortar (fig. 14a), 12-, 18-, and 24-pounder iron guns (fig. 14c) and later the 4-1/2;-inch cast-iron rifle. With the exception of the new 3-inch ordnance wrought-iron rifle (fig. 14e), field artillery cannon were bronze: 6-and 12-pounder guns, the 12-pounder Napoleon gun-howitzer, 12-pounder mountain howitzer, 12-, 24-, and 32-pounder field howitzers, and the Coehorn mortar (fig. 39). A machine gun Invented by Dr. Richard J. Gatling became part of the artillery equipment during the war, but was not much used. Reminiscent of the ancient ribaudequin, a repeating cannon of several barrels, the Gatling gun could fire about 350 shots a minute from its 10 barrels, which were rotated and fired by turning a crank. In Europe it became more popular than the French mitrailleuse.
various artillery pieces
FIGURE 14—U. S. ARTILLERY TYPES (1861-1865). a—Siege mortar. b—S-inch siege howitzer. c—24-pounder siege gun. d—8-inch Columbiad. e—3-inch ordnance wrought-iron rifle. f—10-inch Rodman.
The smaller smoothbores were effective with case shot up to about 600 or 700 yards, and maximum range of field pieces went from something less than the 1,566-yard solid-shot trajectory of the Napoleon to about 2,600 yards (a mile and a half) for a 6-inch howitzer. At Chancellorsville, one of Stonewall Jackson's guns fired a shot which bounded down the center of a roadway and came to rest a mile away. The performance verified the drill-book tables. Maximum ranges of the larger pieces, however, ran all the way from the average 1,600 yards of an 18-pounder garrison gun to the well over 3-mile range of a 12-inch Columbiad firing a 180-pound shell at high elevation. A 13-inch seacoast mortar would lob a 200-pound shell 4,325 yards, or almost 2-1/2 miles. The shell from an 8-inch howitzer carried 2,280 yards, but at such extreme ranges the guns could hardly be called accurate.
On the battlefield, Napoleon's artillery tactics were no longer practical. The infantry, armed with its own comparatively long-range firearm, was usually able to keep artillery beyond case-shot range, and cannon had to stand off at such long distances that their primitive ammunition was relatively ineffective. The result was that when attacking infantry moved in, the defending infantry and artillery were still fresh and unshaken, ready to pour a devastating point-blank fire into the assaulting lines. Thus, in spite of an intensive bombardment of almost 2 hours by 142 Confederate guns at the crisis of Gettysburg, as the grayclad troops advanced across the field to close range, double canister and concentrated infantry volleys cut them down in masses.
Field artillery smoothbores, under conditions prevailing during the war, generally gave better results than the smaller-caliber rifle. A 3-inch rifle, for instance, had twice the range of a Napoleon; but in the broken, heavily wooded country where so much of the fighting took place, the superior range of the rifle could not be used to full advantage. Neither was its relatively small and sometimes defective projectile as damaging to personnel as case or grape from a larger caliber smoothbore. At the first battle of Manassas (July 1861) more than half the 49 Federal cannon were rifled; but by 1863, even though many more rifles were in service, the majority of the pieces in the field were still the old reliable 6- and 12-pounder smoothbores.
It was in siege operations that the rifles forced a new era. As the smoke cleared after the historic bombardment of Fort Sumter in 1861, military men were already speculating on the possibilities of the newfangled weapon. A Confederate 12-pounder Blakely had pecked away at Sumter with amazing accuracy. But the first really effective use of the rifles in siege operations was at Fort Pulaski (1862). Using 10 rifles and 26 smoothbores, Colonel Gillmore breached the 712-foot-thick brick walls in little more than 24 hours. Yet his batteries were a mile away from the target! The heavier rifles were converted smoothbores, firing 48-, 64-, and 84-pound James projectiles that drove into the fort wall from 19 to 26 inches at each fair shot. The smoothbore Columbiads could penetrate only 13 inches, while from this range the ponderous mortars could hardly hit the fort. A year later, Gillmore used 100-, 200-, and 300-pounder Parrott rifles against Fort Sumter. The big guns, firing from positions some 2 miles away and far beyond the range of the fort guns, reduced Sumter to a smoking mass of rubble.
The range and accuracy of the rifles startled the world. A 30-pounder (4.2-inch) Parrott had an amazing carry of 8,453 yards with 80-pound hollow shot; the notorious "Swamp Angel" that fired on Charleston in 1863 was a 200-pounder Parrott mounted in the marsh 7,000 yards from the city. But strangely enough, neither rifles nor smoothbores could destroy earthworks. As was proven several times during the war, the defenders of a well-built earthwork were able to repair the trifling damage done by enemy fire almost as soon as there was a lull in the shooting. Learning this lesson, the determined Confederate defenders of Fort Sumter in 1863-65 refused to surrender, but under the most difficult conditions converted their ruined masonry into an earthwork almost impervious to further bombardment.
The Change into
Modern Artillery
With Rodman's gun, the muzzle-loading smoothbore was at the apex of its development. Through the years great progress had been made in mobility, organization, and tactics. Now a new era was beginning, wherein artillery surpassed even the decisive role it had under Gustavus Adolphus and Napoleon. In spite of new infantry weapons that forced cannon ever farther to the rear, artillery was to become so deadly that its fire caused over 75 percent of the battlefield casualties in World War I.
Many of the vital changes took place during the latter years of the 1800's, as rifles replaced the smoothbores. Steel came into universal use for gun founding; breech and recoil mechanisms were perfected; smokeless powder and high explosives came into the picture. Hardly less important was the invention of more efficient sighting and laying mechanisms.
The changes did not come overnight. In Britain, after breechloaders had been in use almost a decade, the ordnance men went back to muzzle-loading rifles; faulty breech mechanisms caused too many accidents. Not until one of H.M.S. Thunderer's guns was inadvertently double-loaded did the British return to an improved breechloader.
The steel breechloaders of the Prussians, firing two rounds a minute with a percussion shell that broke into about 30 fragments, did much to defeat the French (1870-71). At Sedan, the greatest artillery battle fought prior to 1914, the Prussians used 600 guns to smother the French army. So thoroughly did these guns do their work that the Germans annihilated the enemy at the cost of only 5 percent casualties. It was a demonstration of using great masses of guns, bringing them quickly into action to destroy the hostile artillery, then thoroughly "softening up" enemy resistance in preparation for the infantry attack. While the technical progress of the Prussian artillery was considerable, it was offset in large degree by the counter-development of field entrenchment.
As the technique of forging large masses of steel improved, most nations adopted built-up (reinforcing hoops over a steel tube) or wire-wrapped steel construction for their cannon. With the advent of the metal cartridge case and smokeless powder, rapid-fire guns came into use. The new powder, first used in the Russo-Turkish War (1877-78), did away with the thick white curtain of smoke that plagued the gunner's aim, and thus opened the way for production of mechanisms to absorb recoil and return the gun automatically to firing position. Now, gunners did not have to lay the piece after every shot, and the rate of fire increased. Shields appeared on the gun—protection that would have been of little value in the days when gunners had to stand clear of a back-moving carriage.
During the early 1880's the United States began work on a modern system of seacoast armament. An 8-inch breech-loading rifle was built in 1883, and the disappearing carriage, giving more protection to both gun and crew, was adopted in 1886. Only a limited number of the 8-, 10-, and 12-inch rifles mounted en barbette or on disappearing carriages were installed by 1898; but fortunately the overwhelming naval superiority of the United States helped bring the War with Spain to a quick close.
ranges of guns
FIGURE 15—Ranges.
During this war, United States forces were equipped with a number of British 2.95-inch mountain rifles, which, incidentally, served as late as World War II in the pack artillery of the Philippine Scouts. Within the next few years the antiquated pieces such as the 3-inch wrought-iron rifle, the 30-pounder Parrott, converted Rodmans, and the 15-inch Rodman smoothbore were finally pushed out of the picture by new steel guns. There were small-caliber rapid-fire guns of different types, a Hotchkiss 1.65-inch mountain rifle, and Hotchkiss and Gatling machine guns. The basic Pieces in field artillery were 3.2- and 3.6-inch guns and a 3.6-inch mortar. Siege artillery included a 5-inch gun, 7-inch howitzers, and mortars. In seacoast batteries were 8-, 10-, 12-, 14-, and 16-inch guns and 12-inch mortars of the primary armament; intermediate rapid-fire guns of 3-, 4.72-, 5-, and 6-inch calibers; and 6- and 15-pounder rapid-fire guns in the secondary armament.
The Japanese showed the value of the French system of indirect laying (aiming at a target not visible to the gunner) during the Russo-Japanese War (1904-05). Meanwhile, the French 75-mm. gun of 1897, firing 6,000 yards, made all other field artillery cannon obsolete. In essence, artillery had assumed the modern form. The next changes were wrought by startling advances in motor transport. signal communications, chemical warfare, tanks, aviation, and mass production.
Cannon Primer Devices
When the powder bag came into use, the gunner had to prick the bag open so the priming fire from the vent could reach the charge. The operation was accomplished simply enough by plunging the gunner's pick into the vent far enough to pierce the bag. Then the vent was primed with loose powder from the gunner's flask. The vent prime, which was not much improved until the nineteenth century, was a trick learned from the fourteenth century Venetians. There were numerous tries for improvement, such as the powder-filled tin tube of the 1700's, the point of which pierced the powder bag. But for all of them, the slow match had to be used to start the fire train.
linstocks
FIGURE 18—LINSTOCKS.
Before 1800, the slow match was in universal use for setting off the charge. The match was usually a 3-strand cotton rope, soaked in a solution of saltpeter and otherwise chemically treated with lead acetate and lye to burn very slowly—about 4 or 5 inches an hour. It was attached to a linstock (fig. 18), a forked stick long enough to keep the cannoneer out of the way of the recoil.
Chemistry advances, like the isolation of mercury fulminate in 1800, led to the invention of the percussion cap and other primers. On many a battleground you may have picked up a scrap of twisted wire—the loop of a friction primer. The device was a copper tube (fig. 19) filled with powder. The tube went into the vent of the cannon and buried its tip in the powder charge. Near the top of this tube was soldered a "spur"—a short tube containing a friction composition (antimony sulphide and potassium chlorate). Lying in the composition was the roughened end of a wire "slider." The other end of the slider was twisted into a loop for hooking to the gunner's lanyard. It was like striking a match: a smart pull on the lanyard, and the rough slider ignited the composition. Then the powder in the long tube began to burn and fired the charge in the cannon. Needless to say, it happened faster than we can tell it!
friction primer
FIGURE 19—FRICTION PRIMER.
The percussion primer was even more simple: a "quill tube," filled with fine powder, fitted into the vent. A fulminate cap was glued to the top of the tube. A pull of the lanyard caused the hammer of the cannon to strike the cap (just like a little boy's cap pistol) and start the train of explosions.
Because the early methods of priming left the vent open when the cannon fired, the little hole tended to enlarge. Many cannon during the 1800's were made with two vents, side by side. When the first one wore out, it was plugged, and the second vent opened. Then, to stop this "erosion," the obturating (sealing) primer came into use. It was like the common friction primer, but screwed into and sealed the vent. Early electric primers, by the way, were no great departure from the friction primer; the wires fired a bit of guncotton, which in turn ignited the powder in the primer tube.
Modern Use of Black Powder
Aside from gradual improvement in the formula, no great change in powder making came until 1860, when Gen. Thomas J. Rodman of the U. S. Ordnance Department began to tailor the powder to the caliber of the gun. The action of ordinary cannon powder was too sudden. The whole charge was consumed before the projectile had fairly started on its way, and the strain on the gun was terrific. Rodman compressed powder into disks that fitted the bore of the gun. The disks were an inch or two thick, and pierced with holes. With this arrangement, a minimum of powder surface was exposed at the beginning of combustion, but as the fire ate the holes larger (compare fig. 20f), the burning area actually increased, producing a greater volume of gas as the projectile moved forward. Rodman thus laid the foundation for the "progressive burning" pellets of modern powders (fig. 20).
cannon powder
FIGURE 20—MODERN CANNON POWDER. A powder grain has the characteristics of an explosive only when it is confined. Modern propellants are low explosives (that is, relatively slow burning), but projectiles may be loaded with high explosive, a—Flake. b—Strip, c—Pellet. d—Single perforation, c—Standard 7-perforation, f—Burning grain of 7-perforation type. Ideally, the powder grain should burn progressively, with continuously increasing surface, the grain being completely consumed by the time the projectile leaves the bore. g—Walsh grain.
For a number of reasons General Rodman did not take his "perforated cake cartridge" beyond the experimental stage, and his "Mammoth" powder, such a familiar item in the powder magazines of the latter 1800's, was a compromise. As a block of wood burns steadier and longer than a quick-blazing pile of twigs, so the 3/4-inch grains of mammoth powder gave a "softer" explosion, but one with more "push" and more uniform pressure along the bore of the gun.
It was in the second year of the Civil War that Alfred Nobel started the manufacture of nitroglycerin explosives in Europe. Smokeless powders came into use, the explosive properties of picric acid were discovered, and melanite, ballistite, and cordite appeared in the last quarter of the century, so that by 1890 nitrocellulose and nitroglycerin-base powders had generally replaced black powder as a propellant.
powder train fuze
FIGURE 21—MODERN POWDER TRAIN FUZE.
Still, black powder had many important uses. Its sensitivity to flame, high rate of combustion, and high temperature of explosion made it a very suitable igniter or "booster," to insure the complete ignition of the propellant. Further, it was the main element in such modern projectile fuzes as the ring fuze of the U. S. Field Artillery, which was long standard for bursts shorter than 25 seconds. This fuze was in the nose of the shell and consisted essentially of a plunger, primer, and rings grooved to hold a 9-inch train of compressed black powder. To set the fuze, the fuze man merely turned a movable ring to the proper time mark. Turning the zero mark toward the channel leading to the shell's bursting charge shortened the burning distance of the train, while turning zero away from the channel, of course, did the opposite. When the projectile left the gun, the shock made the plunger ignite the primer (compare fig. 42e) and fire the powder train, which then burned for the set time before reaching the shell charge. It was a technical improvement over the tubular sheet-iron fuze of the Venetians, but the principle was about the same.

RSS

Important (read & understand)

How to Contact us:Preferred Contact point

Skype: Travelingraggyman

 

Email and Instant Messenger:

TravelerinBDFSM @ aol/aim;  hotmail; identi.ca; live & yahoo

OR

Travelingraggyman @ gmail and icq ***

***

Find us on Google+

Please vote for Our Site. You can vote once a day. Thank you for your support. just click on the badge below
Photobucket

OUR MOST RECENT  AWARD


1AWARD UPDATES & INFORMATION
10,000 votes - Platinum Award
5,000 votes - Gold Award
2,500 votes - Silver Award
1,000 votes - Bronze Award
300 votes - Pewter Award
100 votes - Copper Award


Member of the Associated  Posting System {APS}

This allows members on various sites to share information between sites and by providing a by line with the original source it credits the author with the creation.

Legal Disclaimer

***************We here at Traveling within the World are not responsible for anything posted by individual members. While the actions of one member do not reflect the intentions of the entire social network or the Network Creator, we do ask that you use good judgment when posting. If something is considered to be inappropriate it will be removed

 

This site is strictly an artist operational fan publication, no copyright infringement intended

Patchwork Merchant Mercenaries had its humble beginnings as an idea of a few artisans and craftsmen who enjoy performing with live steel fighting. As well as a patchwork quilt tent canvas. Most had prior military experience hence the name.

 

Patchwork Merchant Mercenaries.

 

Vendertainers that brought many things to a show and are know for helping out where ever they can.

As well as being a place where the older hand made items could be found made by them and enjoyed by all.

We expanded over the years to become well known at what we do. Now we represent over 100 artisans and craftsman that are well known in their venues and some just starting out. Some of their works have been premiered in TV, stage and movies on a regular basis.

Specializing in Medieval, Goth , Stage Film, BDFSM and Practitioner.

Patchwork Merchant Mercenaries a Dept of, Ask For IT was started by artists and former military veterans, and sword fighters, representing over 100 artisans, one who made his living traveling from fair to festival vending medieval wares. The majority of his customers are re-enactors, SCAdians and the like, looking to build their kit with period clothing, feast gear, adornments, etc.

Likewise, it is typical for these history-lovers to peruse the tent (aka mobile store front) and, upon finding something that pleases the eye, ask "Is this period?"

A deceitful query!! This is not a yes or no question. One must have a damn good understanding of European history (at least) from the fall of Rome to the mid-1600's to properly answer. Taking into account, also, the culture in which the querent is dressed is vitally important. You see, though it may be well within medieval period, it would be strange to see a Viking wearing a Caftan...or is it?

After a festival's time of answering weighty questions such as these, I'd sleep like a log! Only a mad man could possibly remember the place and time for each piece of kitchen ware, weaponry, cloth, and chain within a span of 1,000 years!! Surely there must be an easier way, a place where he could post all this knowledge...

Traveling Within The World is meant to be such a place. A place for all of these artists to keep in touch and directly interact with their fellow geeks and re-enactment hobbyists, their clientele.

© 2025   Created by Rev. Allen M. Drago ~ Traveler.   Powered by

Badges  |  Report an Issue  |  Terms of Service